Semi-solid forming of Mg-Li-Al-Ca light metal alloys.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CASTABILITY OF Al-Li-Mg AND Al-Li-Cu-Mg ALLOYS

The objective of the present work is to study the casting characteristics of various A1-Li alloys, which include fluidity and strengths of the alloys and their interaction with cast molds. Materials investigated are Al-Li-Mg and Al-Li-Cu-Mg alloys with Li content of 2.5 wt%. The results show that sand molds with resin binders are good for A1-Li casting. Ceramic coatings can further reduce the m...

متن کامل

MICROSTRUCURE AND STRENGTHENING OF Al-Li-Cu-Mg ALLOYS

A detailed quantitative model for the strengthening of monolithic alloys and composites due to precipitation strengthening, solution strengthening, grain and subgrain strengthening, strengthening by dislocations and load transfer to ceramic inclusions is presented. The model includes a newly derived description of the effect of a precipitate free zone (PFZ) around the reinforcing phase incorpor...

متن کامل

CREEP AGE FORMING OF Al-Zn-Mg ALLOYS WITH OPTIMIZATION OF MECHANICALl PROPERTIES

Creep age forming (CAF) is one of the novel methods in aerospace industry that has been used to manufacture components of panels with improved mechanical properties and reduced fabrication cost. CAF is a combined age-hardening and stress-relaxation that are responsible for strengthening and forming, respectively. This paper deals with the experimental investigations of mechanical and springback...

متن کامل

CORROSION FATIGUE CRACK PROPAGATION AND INHIBITION IN Al-Zn-Mg-Cu VS Al-Cu-Mg/Li ALLOYS

Age-hardenable aluminum alloys used in aerospace structures are susceptible to environment assisted fatigue crack propagation (EFCP), limiting component durability and safety. The objective is to quantitatively understand EFCP and its inhibition for important aerospace alloys: 7075-T651 (Al-Zn-Cu-Mg), C433-T3 (Al-Cu-Mg), and C47A-T86 (AlCu-Li). EFCP is understood through the hydrogen embrittlem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Japan Institute of Light Metals

سال: 1998

ISSN: 0451-5994,1880-8018

DOI: 10.2464/jilm.48.13